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An  attempt is made to elaborate different variants of asymptotic solutions to one of the  problems, which 

are critical for practical applications, -  determination of the shape  of slender supercavities behind  extended 
axisymmetric bodies.  This study is aimed at development of simple engineering  equations based on asymptotic 
solutions for the reliable shape estimation of cavities  behind extended axisymmetric cavitators of quite 
arbitrary shapes.  

 
Problems of reliable calculation, in case of cavities with very big elongations, appear to be very 

topical  for a number of applications. However, considerable elongation of supercavities combined 
with a complex singular structure of solutions provides an essential hindrance for elaboration of quite 
reliable numerical solutions of these problems. Therefore, reliable nonlinear numerical solutions are 
currently available only for separate stationary test problems. At the same time, applications require 
quite simple methods of calculation, which are in some cases essentially distinct from test solutions. 
On the other hand, slenderness appeared to be a considerable simplifying factor, which allows one to 
construct quite simple asymptotic solutions. These solutions are very convenient as the basis for 
elaboration of simple and reliable methods of engineering calculations in the majority of applications.  

Problem statement. The basics of hydrodynamics of supercavitation is presented in  
monography [1]. Within framework of the model of ideal incompressible liquid, the problem of 
determination of a supercavitating flow within the limits of hydrodynamics of slender bodies is 
reduced to the solution of the integro-differential equation for the cavity shape r R(x)  behind a 
cavitator nr r (x)  [2, 3] for the initial conditions in the flow separation cross section and the condition 
for cavity length assessment (1) : 
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Here x= xs is flow separation cross section coordinate, 2
c2(P P ) / U      is the cavitation 

number, where   cP P  is the difference of hydrostatical pressure and pressure in a cavity, ρ is mass 
density of the liquid, and  U is inflow velocity. The parameter 

m c2R / L  l defines the order of 

magnitude of the ratio between the maximal diameter of a cavity 2Rm and the total  length l+Lc of the 
cavitator - cavity system and is assumed to be a small parameter. Below each term  of equation (1) 
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there is indication of  the order of its smallness at δ*→0.  
Regular solutions. The direct solution method for preset cavitator length: The Asymptotic 

solution of  problem (1) is obtained for the preset values of:  the length  l=1 of quite arbitrarily shaped 
cavitator  n n nr r (x) r (x)   and cavitation number  ˆ (x) O(1)  under  condition that / O(1)   and 

for the preset number of various alternatives  O( )   . In case of a cone, tan   , where γ is the cone 
semi-opening angle. The flow separation cross-section is assumed to be fixed (Fig. 1). The solution 
for the cavity shape and length Lc is derived in the form of expansions: 
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The solution in the form of two terms of a series is generally derived in quadratures: 
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(4) 
The solution for a cone m =1  is derived in an analytical form [3], but calculation on the basis 

of  solution (4) is more convenient. Fig. 1 illustrates accuracy of the solution (4) for a cone with 
σ=0.04, γ=10°, and  l = 1 in comparison with the nonlinear numerical calculation [5]. 

  Semi-inverse solution method. Equations of  problem (1) are written in the coordinate system 
with  x=0 in the cavity mid-section. The solution is derived for the preset length Le =1 of the cavity 
rear part, which adjoins its mid-section by the slenderness parameter of this part of cavity, provided 
the condition / O(1)   is satisfied, in the form of expansions similar to (2) for initial conditions (5a): 
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(5) 
where m e1 / R / L    , 

mR being the maximal radius of a cavity. Conditions (5b) are thus set, 

which control the cavity radius Rn, the inclination angle of its meridian  in the flow separation cross 
section, as well as location of the flow separation cross section x=Lm. When the problem solution was 
derived, it became possible to find dependence (6a) between the cavitation number and parameter λ 
of its rear part, in case of a cavity behind a cone.  
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Expression (6а) turned out to be more universal, yielding in the limiting cases the dependence 
for λ of a cavity behind a cylinder (6b) and the earlier derived dependence from elongation, in case 
of a small disk-type cavitator (6c) [3]. Results of calculations via dependence (6a) are depicted in Fig. 
2. For the same cavitation numbers, according to dependences (6b, 6c), a cavity behind a cylinder 
appears essentially  shorter than the rear part of a cavity behind a disk.  

Engineering method of calculation of cavities behind slender axisymmetric cavitators. The 
refined variant of the system of equations [2], which is suitable for calculation of cavities behind 
slender cavitators, has the following form:  
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The basic idea of deriving of these equations implies that the solution for the cavity shape is 
based on the differential equation (3), which is the first approximation of the integro-differential 
equation (1). However, the characteristic factors available in the problem solution are defined on the 
basis of solving more exact integro-differential equation (1). The main advantage of equations (7), in 
addition to their simplicity, is the exclusive universality of their applicability for calculations that 
imply both conditions  / O(1),  and / 0     for quite arbitrary shapes of cavitators and 
dependences from the cavitation number. A very weak dependence of factors in these equations from 
deformation of cavitators and cavities is observed, which is confirmed  experimentally by the well-
known principle of independence of expansion of a cavity [1]. This allows one to use values factors 
derived for the basic form of a cavitator and a cavity in calculations of other forms, which are not too 
distinct from the basic one. Equations (7) contain two characteristic parameters μ and k, which have 
a clear physical meaning. Value μ characterizes the inertia properties of the expanding cavity cross 
section, being a certain inertia factor. This value in the form of dependence (8b) is asessed on the 
basis of the second- order solution  for cavity elongation λ and the second approximation of the 
problem solution (8a) for the case of / 0  [3, 4]. The same dependence in form (8g) is also obtained 
at   for regular / 0(1)   asymptotic solution (6a).  
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Results of calculation of factors μ depending on λ for a cavity behind a cone with o10  (8e) and 
a cylinder (8f) at 1  are depicted in Fig. 3.  
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Fig. 2. Cavitation number σ in dependence (6a) 
from cone semi-opening angle γ for the fixed elongation 
values λ=10 and λ=15 of the rear part of a cavity behind 
its mid-section. 

Fig.3. Dependence (8e) for the inertia factor
( , )     , 1  , in case of a cavity behind a cone  

▬▬▬ a cone o10  , — — a cylinder   

       Numerical calculation 2   , [5] 

As the first initial condition (7b) of the problem (7), the equation of conservation of energy 
transferred from cavitator to cavity cross sections at the initial moment is used. This condition is the 
equivalent of merging and it simulates a small intermediate area in the cavitator’s vicinity by a jump 
in the cavity meredian inclination angle. Value k ~ 0.93 1  in dependence (9a) characterizes a small-
scale longitudinal transfer of energy along cavity cross sections. This value is calculated on the basis 
of the second approximation of the solution at / 0   . Correction (8d) is applied for not small 
enough values of σ.  

A formal solution (10) at σ=const of the first approximation of the regular problem of type (2-
4), in case of equality of the inclination angles of cavitator and cavity meridians in the form of an 
ellipsoidal cavity is obtained as follows: 
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At σ=const the equation for engineering calculation (7a) also controls an ellipsoidal cavity (11) 

which, however, at the corrected inclination angle of cavity meridian in the flow separation cross 
section takes the following form:  
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(11) 
This equation allows one to derive dependences for the cavity maximal radius Rm (11b) and 

length Lc (11c). Results of calculation of the solution (11a) for a cavity behind a cone at o10  , 

0.04, 0.02  , nR 1 o10  0.04, 0.02  , nR 1 , in comparison with the results of nonlinear 

numerical calculation and experimental date[5-7], are depicted in Fig. 4.  
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Fig. 4. Results of calculation for a cavity behind a cone o10  0.04, 0.02  , nR 1 on the basis of the 

equations for engineering calculation (7). 
— — Solution (11a) on the basis of the equations for engineering calculation (7) 
        Nonlinear numerical calculation [5] 
 The formal solution of the first approximation (10) in the form of an ellipsoidal cavity by parameter 

* m c2R / ( L )  l  in case of equality of the inclination angles of cavitator and cavity meridians in the flow 

separation cross section. 
 
Conclusions: 
- Calculations of cavities formed behind extended cavitators of quite arbitrary shapes can be 

conducted using simple engineering equations. 
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