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Two models of vortex flows

Abstract. Two models of vortex flows are proposed. One model is a vortex consisting of a laminar quasi-solid core and
turbulent periphery. Compactness is ensured by the compensation of the vorticity field. As the vorticity field
compensation condition true for both lamina and turbulent flow regimes, it may be used for this type of vortex. The
second model is the turbulent vortex with a cavity when the pressure in the liquid drops to the saturated vapor
pressure. The flow occurs in the annular region (annular turbulent vortex). Both models correspond to the currents
observed in practice and seem plausible.
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Introduction

The concept of vortex compactness is interpreted differently. Many scientists identify the
vortex with the vorticity field. If this field is compact, then the vortex is compact [1]. However,
natural eddy currents actual measurements indicate that the real compact vortices can not have flow
field where vorticity is of the same sign. Ultimate cases are the so-called quasi-point vortices -
turbulent and laminar, - where the vorticity at axis should have a sign opposite to sign of the vorticity
in the rest of the field. This allows us to meet the condition of the vorticity field compensation, which
entails the compactness of the flow as a whole - and not just the vorticity field.

When considering quasi-point vortex models, it was pointed out [2], [3] that the velocity field
on the axis of the vortex has a singularity. Many researchers consider instead of the velocity its
circulation and avoid the singularity. In reality, the flow velocity can reach only finite values,
determined by the pressure of saturated vapor of the liquid (at a given temperature). So there may be,
at least, two flow scenarios. The first, when a vortex has even small in size but a finite laminar core
and turbulent periphery and the pressure inside the vortex does not drop to the pressure of saturated
vapors. The second scenario corresponds to the situation when a cavity forms inside the vortex. This
means that the velocity in the vortex on its inner surface is so great that the pressure decreases to the
saturated vapor pressure.

Compact vortex with laminar core and turbulent periphery

In many vortex flows, the inner part of the vortex, its core, is a stable flow, while the outer
part, that is, the periphery, is unstable turbulent. Undoubtedly, there is an small transition region in
the vortex, where the flow is no longer stable, but also not completely turbulent. However, in models
this is not taken into account. The purpose of this model is a rough approximation of the real flow. In
other words, the so-called zero approximation, which is specified as the initial condition in more
complex models. But, nevertheless, this approximation takes into account the basic physical
properties of the flow: the zero value of the azimuthal velocity on the axis of the vortex and on its
outer boundary (compactness), the laminar core and the turbulent periphery.

If we consider the corresponding Gromeka-Lamb equations (often confused with the Navier-
Stokes equations) in cylindrical coordinates, then, taking into account the laminar flow in the core
and turbulent periphery, we obtain the following model for azimuthal velocity and vorticity (axial
component) :
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These relations are valid when the pressure in the core of the vortex does not drop to saturated
vapor pressure. If the azimuthal velocity in the vortex is so high that an air cavity is formed, the core
of the vortex is already absent and only the turbulent periphery remains - the annular vortex.

Turbulent confined annular vortex with a cavity at the axis of rotation
To construct a vortex model with a cavity, we use the solution of the corresponding equation
describing the turbulent rotation [3,4]
From the foregoing, a simple model of a turbulent annular vortex follows
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Unlike the first model, the motion occurs in a finite (confined) area (pipe-like). Integrally, the
circulation in the vortex is not equal to zero. Vorticity field is no longer compensated. The main task
for this flow is the determination of the radius of the cavity. This is achieved by the condition that the

pressure in the vortex drops to the value of the saturated vapor pressure, i.e.
Wu:@:5+g: 2P =P 3)
& p
To determine both constants, in addition to relation (3), it is necessary to meet the non-slip
condition on the outer wall

V,(r=R))=0 < %+C2:0, = C,=-RC,. (4)

Relations (3-4) allow us to find the constants C; and C,. In explicit form, we obtain the
following simple model of a constrained vortex with a cavity at the axis of rotation region
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In this case, the radius of the cavity . is determined from the relation
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Figures 1—2 show the fields of velocity and vorticity corresponding to both of the above
models.

Thus, from a simple model of a compact turbulent vortex, one can obtain flow models
corresponding to realities. In conclusion, it is important to note that a turbulence model with a
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constant viscosity coefficient was used, which is valid for flows with Reynolds numbers of the order
of a million — the so-called Ultimate Taylor — Couetter flow [4].
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Fig. 1. The field of vorticity and azimuthal velocity in a compact vortex with a laminar core and turbulent
periphery.
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Fig. 2. Fields of vorticity and azimuthal velocity in a confined annular vortex with a cavity of rotation.
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